Search results for "Ceria nanoparticles"

showing 2 items of 2 documents

Alteration of the Mitochondrial Effects of Ceria Nanoparticles by Gold: An Approach for the Mitochondrial Modulation of Cells Based on Nanomedicine

2020

Ceria nanoparticles are cell compatible antioxidants whose activity can be enhanced by gold deposition and by surface functionalization with positive triphenylphosphonium units to selectively target the mitochondria. The antioxidant properties of these nanoparticles can serve as the basis of a new strategy for the treatment of several disorders exhibiting oxidative stress, such as cancer, diabetes or Alzheimer&rsquo

AntioxidantantioxidantGeneral Chemical Engineeringmedicine.medical_treatmentNanoparticleceria nanoparticles02 engineering and technologyMitochondrionmedicine.disease_causeArticlelcsh:Chemistry03 medical and health scienceschemistry.chemical_compoundQUIMICA ORGANICAmitochondrial functionmedicineGeneral Materials ScienceNRF1Gold-supported ceria nanoparticles030304 developmental biology0303 health sciencesChemistryfungigold-supported ceria nanoparticlesfood and beveragestriphenylphosphonium gold-supported ceria nanoparticles021001 nanoscience & nanotechnologylcsh:QD1-999Colloidal goldBiophysicsNanomedicineMitochondrial functionAntioxidant0210 nano-technologyAdenosine triphosphateCeria nanoparticlesOxidative stressTriphenylphosphonium gold-supported ceria nanoparticles
researchProduct

In vivo biodistribution of amino-functionalized ceria nanoparticles in rats using positron emission tomography.

2012

A variety of nanoparticles have been proposed for several biomedical applications. To gauge the therapeutic potential of these nanoparticles, in vivo biodistribution is essential and mandatory. In the present study, ceria nanoparticles (5 nm average particle size) were labeled with F-18 to study their in vivo biodistribution in rats by positron emission tomography (PET). The F-18 isotope was anchored by reaction of N-succinimidyl 4-[F-18]fluorobenzoate (F-18-SFB) with a modified nanoparticle surface obtained by silylation with 3-aminopropylsilyl. Radiolabeled ceria nanoparticles accumulated mainly in lungs, spleen, and liver. Metabolic products of the radiolabeled nanoparticulate material w…

MaleFluorine RadioisotopesSilylationPharmaceutical ScienceNanoparticleNanotechnologyceria nanoparticlesBenzoatesAmino functionalizedRats Sprague-DawleyQUIMICA ORGANICADrug DiscoverymedicineImage Processing Computer-AssistedAnimalsTissue DistributionLungmedicine.diagnostic_testChemistryRadiochemistryrodentCeriumin vivo evaluationRatsPETLiverPositron emission tomographyIn vivo biodistributionPositron-Emission TomographyMolecular MedicineNanoparticlesParticle sizeRadiopharmaceuticalspharmacokineticsSpleenMolecular pharmaceutics
researchProduct